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SLU?lmary Further exampZes of the title reaction, discovered by Carlson, 

Sheppard, and Webster, reveal scope and regiochemistry of the 

formation of 1,6_dihydropyridazines; all the evidence points 

to a concerted primary addition. 

1 
It was in 1919 that K.H. Meyer , in a bold generalization, asserted 

that phenyl ethers and aliphatic 1,3-dienes are capable of azo coupling with aro- 

matic diazonium ions: e.g., formula 1 was assigned to the yellow needles obtai- 

ned from 4-nitrobenzenediazonium chloride and 2,3_dimethylbutadiene. What had be- 

come accepted textbook knowledge, required revision more than fifty years later. 

Carlson, Sheppard and Webster 
2 
demonstrated the dienophilic activity of arenedi- 

azonium nitrogen and established structure 3 for the above-mentioned product. As 

a benzene substituent, -N 
2+ commands the highest electron attraction known. Accor- 

ding to the MO perturbation theory, 
3 

1,3-dienes with high HOMO energy, i.e., elec- 

tron-rich dienes, should be especially reactive in concerted Diels-Alder additi- 

ons which are LU(diazonium ion) - HO(diene) controlled. We have varied the 1,3-die- 

ne beyond 2,3_dimethylbutadiene and trans-piperylene 
2 
to learn about scope and 

regiochemistry. 
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suspension of the 4-nitrobenzenediazonium fluoborate (4) in acetoni- 

was stirred with 2 equiv. of the diene; the rate of dissolution cor- 

the reactivity of the 1,3-diene. Either the crystalline product pre- 

the mixture was worked up with dichloromethane/water. One mol of HBF 
4 

which can polymerize some diene; addition of triethylamine was not 
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advantageous, however. Occasionally, the sensitivity of the 1,6_dihydropyridazi- 

ne derivatives posed problems. 

(4)-NO,C,t+N 
R 
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4 5 R =H (68%) 7 n=3 

6 R-CH, (58%) 8 n=4 

Butadiene did not combine with 4 -* The unstable product 

(67%) 

(65%) 

from isoprene and 
1 

2,4-dinitrobenzenediazonium fluoborate (59%, dec.p. 108'C; lit.:' 98'C) revealed 

in the 
1 
H-NMR spectrum the methyl signals of both regioisomers, accompanied by 

those of decomposition products. trans,trans-2,4-Hexadiene, l,l'-dicyclopentenyl, 

l,l'-dicyclohexenyl furnished the orange-yellow crystals of 5 (mp 93-94.5'C), 1 

(mp 37.5-139.5"C), and 8 (mp 157-158’C) .4 
The Amax 

values (CH2C12) of these cyc- 

lic hydrazones occur at 421, 431 and 442 nm (log E 4.4), respectively, i.e., at 

longer waves than crotonaldehyde-N-methyl-4-nitrophenylhydrazone (402 nm, log E 

4.6). In the 
1 
H-NMR spectrum of 6, the s(3-CH3) at 6 2.10 corresponds to s(3-CH3) 

in 2 (6 2.03) and appears at lower field than the 4-CH3 of 3 (6 1.77); the 6-CH3 - 
of 5 absorbs at 6 1.19 and the 6-H as a quintuplet at 4.83 with J = 6.5 Hz. The 

6-H of 1 and 8 display homoallylic couplings to 4-CH2. 

‘C,H,NO,-(4) 

11 9 R = H (69%) 

10 R = CH, (74%) 

12 R = CH, (39%) 

13 R = C,H, (30%) 

In the formation of 6 - - 8, the salt 4 dissolved in 30 min at 0°C. The 

addition to trans,trans-1,4_diphenylbutadiene was slower and required 12 hr. The 

ABC spectrum of the ring protons of 2 (mp 165-166’C) was simulated by LAME: 5 4-H 

6 6.50, 5-H 6.35, 6-H 5.80. The reaction of 4 with 2,3-dimethyl-trans,trans-1,4- 

diphenylbutadiene, despite its steric encumbrance, was complete after 30 min and 

afforded 10 (mp 202-203'C). The introduction of one p-methoxy group into trans- - 
trans-1,4_diphenylbutadiene reduced the reaction time to 1 hr whereas one p-nitro 



59 

group thwarts the interaction with 4. 

The I:1 reaction of I-p-methoxyphenyl-4-phenylbutadiene provided the 

amorphous lJ; its 
1 
H-NMR spectrum revealed no other admixture than <5% of the 

starting diene. The singlet of the non-conjugated 6-C6H5 of 9 has disappeared 

in 11, and the 6-H absorbs in 11 at higher field (6 5.64) than in 2 (5.801, due - 

to the electron release by OCH3. In the 13C-NMR spectra (CDC13) of 9 and 11, the - 

singlet of the C-3 shows virtually the same 6c (142.8 and 142.7) while the d(C-6) 

of 9 at 57.1 is shifted to 55.1 for 11 - -* 

The reactions of 4 with trans,trans-I-phenyl-1,3_pentadientadiene and -hexadi- 

ene were run at -3O“C to avoid polymerization of the diene. Adduct 12 (mp 140- - 

141'C) displayed in the 'H-NMR spectrum the methyl singlet at 6 2.07, the 6-H at 

5.64, and the singlet of 6-C6H5 at 7.20. The quadruplet of the CH2 group at 

6 2.47 leaves no doubt that in product 13 (mp 83-84.5"C) the alkyl group is li- - 

kewise located in position 3; the singlets for 6-H at 6 5.71 and for 6-C6H5 at 

7.20 corroborate structure 13 _. 

We confirm formula 2 for the piperylene product: 
2 

the American authors 

emphasized that the addition direction is opposite to that which one would expect 

for the best carbonium intermediate in the framework of a two-step cycloaddition, 

the first step being the electrophilic attack by the aromatic diazonium ion. How- 

ever, structures Jl_ - 13 are consistent with either a one-step or a two-step cyc- 

loaddition. Both mechanisms furnish the 3,6_dihydropyridazinium salts of type 2 - 

which are deprotonated. The fact that the adducts of benzene- and halobenzenedi- 

azonium salts suffer dehydrogenation to aromatic pyridazinium salts, 
2 

is in agree- 

ment with the type 2 intermediate. - 
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Butadienes usually favor the s-trans to the s-cis conformation: the equi- 

librium depends on the substituents. The s-cis arrangement is a conditio sine qua 

non for the concerted Diels-Alder reaction. On the other hand, in the terminal azo 

coupling the s-trans conformation should be preferred because exo,exo-disubstitu- 

ted ally1 cations like 14 are better than the exo,endo-disubstituted 15 - -* The cyc- 

lization of 14 to the 3,6_dihydropyridazinium ion would require a rotation within - 

the allylic system: such a rotation costs 24 kcal mol 
-1 

for the exo,endo + exo,exo- 



dimethylallyl cation in SbF5/SO2ClF at 35'C. 
6 
The cyclization of 15 is free of - 

this disadvantage. It is anticipated that the exo,exo-disubstituted cation 14 -. 
should be captured by a nucleophilic solvent, e.g., giving 16 with methanol. On - 
carrying out the reactions of 4 with various 1,3-dienes in methanol, we obtained 

the same 1,6_dihydropyridazines described above, although in somewhat diminished 

yields. 

From the reaction of 4 with I-phenylhexa-1,3-diene in methanol we isola- - 
ted the yellow methanol adduct 17 (mp 125-126OC) in 28% yield besides 13. The - - 
x 
max 

= 395 nm (CH2C12) indicates a non-conjugated 4-nitrophenylhydrazone system 

and the 
1 H-NMR spectrum is void of olefinic H signals. Besides the t and q of 

3-C2H5, the 4-H2 gives rise to a multiplet at 6 2.16 and the 5-H to q at 3.90. 

The 13C-data are consistent with II; some MS peaks: 339 (M+, lOO%), 226 

(C6~5-~~=~-~6~4~02+, 97%), 134 (cH~~-cH=cH-C~H~+, 20%). _ 17 is not the result of 

trapping, but of a subsequent addition of methanol. The dihydropyridazine 13 was - 
converted to 17 (60%) in methanol in the presence of sulfuric acid. - 

Thus, all the findings point to a concerted cycloaddition of 1,3-dienes 

to the diazonium nitrogens giving the 3,6_dihydropyridazines. This reaction needs 

not necessarily be an exothermic one. It is conceivable that a slightly endother- 

mic Diels-Alder addition is followed by an exothermic step, either the deprotona- 

tion affording the 1,6_dihydropyridazines or the dehydrogenation which furnishes 

the pyridazinium ions. 
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