Tetrahedron Letters,Vol.25,No.l,pp 57 - 60,1984 0040-4039/84 \$3.00 + .OO

@1984 Pergamon Press Ltd.

DIELS-ALDER REACTIONS OF 1,3-DIENES WITH 4-NITROBENZENEDIAZONIUM SALT AS A DIENOPHILE

Franz Bronberger and Rolf Huisgen^{*}

Institut fiir Organische Chemie der Universitat Miinchen, Karlstr. 23 D-8000 Miinchen 2, FR.G

Summary Further examples of the title reaction, discovered by Carlson, *Sheppard,* and *Webster, reveal scope and regiochemistry of the formation of 1,6_dihydropyridazines; all the evidence points to a concerted primary addition.*

It was in 1919 that K.H. Meyer¹, in a bold generalization, asserted that phenyl ethers and aliphatic 1,3-dienes are capable of *azo* coupling with aromatic diazonium ions; $e.g.,$ formula 1 was assigned to the yellow needles obtained from 4-nitrobenzenediazonium chloride and 2,3-dimethylbutadiene. What had become accepted textbook knowledge, required revision more than fifty years later. Carlson, Sheppard and Webster 2 demonstrated the *dienophilic* activity of arenediazonium nitrogen and established structure 3 for the above-mentioned product. As a benzene substituent, $-N_2^+$ commands the highest electron attraction known. According to the MO perturbation theory, 3 1, 3-dienes with high HOMO energy, $i.e.,$ electron-rich dienes, should be especially reactive in concerted Diels-Alder additions which are LU(diazonium ion) - HO(diene) controlled. We have varied the $1,3$ -diene beyond 2,3-dimethylbutadiene and $\emph{trans-piperylene}^{-2}$ to learn about scope and regiochemistry.

The suspension of the 4-nitrobenzenediazonium fluoborate (4) in acetonitrile at 0°C was stirred with 2 equiv. of the diene; the rate of dissolution corresponded to the reactivity of the 1,3-diene. Either the crystalline product precipitated or the mixture was worked up with dichloromethane/water. One mol of ${\tt HBF}_4$ is generated which can polymerize some diene; addition of triethylamine was not

advantageous, however. Occasionally, the sensitivity of the 1,6-dihydropyridazine derivatives posed problems.

Butadiene did not combine with $\underline{4}$. The unstable product from isoprene and 1 2,4-dinitrobenzenediazonium fluoborate (59%, dec.p. 108'C; lit.:' 98'C) revealed in the 1 ^{H-NMR} spectrum the methyl signals of both regioisomers, accompanied by those of decomposition products. trans, trans-2, 4-Hexadiene, 1, 1'-dicyclopentenyl, 1,1'-dicyclohexenyl furnished the orange-yellow crystals of 6 (mp 93-94.5°C), 7 (mp 37.5-139.5°C), and <u>8</u> (mp 157-158°C).⁴ The λ_{max} values (CH₂Cl₂) of these cyc**lic** hydrazones occur at 421, 431 and 442 nm (log E 4.4), respectively, i.e., at longer waves than crotonaldehyde-N-methyl-4-nitrophenylhydrazone (402 nm, log ε 4.6). In the ¹H-NMR spectrum of 6, the s(3-CH₃) at δ 2.10 corresponds to s(3-CH₃) in 5 (δ 2.03) and appears at lower field than the 4-CH₃ of 3 (δ 1.77); the 6-CH₃ of 6 absorbs at δ 1.19 and the 6-H as a quintuplet at 4.83 with $J = 6.5$ Hz. The 6-H of $\frac{7}{6}$ and $\frac{8}{3}$ display homoallylic couplings to 4-CH₂.

In the formation of $6 - 8$, the salt 4 dissolved in 30 min at 0° C. The addition to $trans, trans-1, 4-diphenylbutadiene$ was slower and required 12 hr. The ABC spectrum of the ring protons of 9 (mp 165-166°C) was simulated by LAME:⁵ 4-H $6.6.50$, 5-H 6.35 , $6-H$ 5.80. The reaction of 4 with 2,3-dimethyl-trans, trans-1,4diphenylbutadiene, despite its steric encumbrance, was complete after 30 min and afforded 10 (mp 202-203'C). The introduction of one p-methoxy group into *trans-* $trans-1$, 4-diphenylbutadiene reduced the reaction time to 1 hr whereas one p-nitro group thwarts the interaction with 4.

The I:1 reaction of I-p-methoxyphenyl-4-phenylbutadiene provided the amorphous 11 ; its 1 H-NMR spectrum revealed no other admixture than <5% of the starting diene. The singlet of the non-conjugated 6-C₆H₅ of <u>9</u> has disappeared in 11, and the 6-H absorbs in 11 at higher field (8 5.64) than in <u>9</u> (5.80), due to the electron release by OCH₃. In the ¹³C-NMR spectra (CDCl₃) of $\frac{1}{9}$ and 11, the singlet of the C-3 shows virtually the same δ_c (142.8 and 142.7) while the d(C-6) of 9 at 57.1 is shifted to 55.1 for 11 .

The reactions of $\frac{4}{5}$ with $trans,trans-1-phenyl-1,3-pentadiene$ and -hexadiene were run at -30° C to avoid polymerization of the diene. Adduct 12 (mp 140-141°C) displayed in the ¹H-NMR spectrum the methyl singlet at δ 2.07, the 6-H at 5.64, and the singlet of $6-C_fH_f$ at 7.20. The quadruplet of the CH₂ group at 6 2.47 leaves no doubt that in product 13 (mp 83-84.5°C) the alkyl group is likewise located in position 3; the singlets for 6-H at δ 5.71 and for 6-C₆H₅ at 7.20 corroborate structure 13.

We confirm formula 5 for the piperylene product;² the American authors emphasized that the addition direction is opposite to that which one would expect for the best carbonium intermediate in the framework of a two-step cycloaddition, the first step being the electrophilic attack by the aromatic diazonium ion. However, structures 11 - 13 are consistent with either a one-step or a two-step cycloaddition. Both mechanisms furnish the 3,6-dihydropyridazinium salts of type 2 which are deprotonated. The fact that the adducts of benzene- and halobenzenediazonium salts suffer dehydrogenation to aromatic pyridazinium salts, 2 is in agreement with the type 2 intermediate.

Butadienes usually favor the *s-trans* to the s-cis conformation: the equilibrium depends on the substituents. The s-cis arrangement is a *conditio sine qua non* for the concerted Diels-Alder reaction. On the other hand, in the terminal azo coupling the *s-trans* conformation should be preferred because exo,exo-disubstituted allyl cations like 14 are better than the exo , $endo$ -disubstituted 15 . The cyclization of 14 to the 3,6-dihydropyridazinium ion would require a rotation within the allylic system; such a rotation costs 24 kcal mol⁻¹ for the $exo,endo + exo, exo-$ dimethylallyl cation in SbF₅/SO₂ClF at 35°C.⁶ The cyclization of 15 is free of this disadvantage. It is anticipated that the exo , exo -disubstituted cation 14 should be captured by a nucleophilic solvent, $e.g.,$ giving 16 with methanol. On carrying out the reactions of 4 with various 1,3-dienes in methanol, we obtained the same 1,6-dihydropyridazines described above, although in somewhat diminished yields.

From the reaction of 4 with 1- phenylhexa-1, 3-diene in methanol we isolated the yellow methanol adduct 17 (mp 125-126°C) in 28% yield besides 13. The λ_{\max} = 395 nm (CH₂Cl₂) indicates a non-conjugated 4-nitrophenylhydrazone system and the ¹H-NMR spectrum is void of olefinic H signals. Besides the t and q of $3-C_2H_5$, the $4-H_2$ gives rise to a multiplet at δ 2.16 and the 5-H to q at 3.90. The ¹³C-data are consistent with 17 ; some MS peaks: 339 (M⁺, 100%), 226 $(C_{6}H_{5}-CH=N-C_{6}H_{A}NO_{2}$ ⁺, 97%), 134 (CH₃O-CH=CH-C₆H₅⁺, 20%). 17 is not the result of trapping, but of a *subsequent* addition of methanol. The dihydropyridazine 13 was converted to 17 (60%) in methanol in the presence of sulfuric acid.

Thus, all the findings point to a concerted cycloaddition of 1,3-dienes to the diazonium nitrogens giving the 3,6-dihydropyridazines. This reaction needs not necessarily be an exothermic one. It is conceivable that a slightly *endothermic* Diels-Alder addition is followed by an exothermic step, either the deprotonation affording the 1,6-dihydropyridazines or the dehydrogenation which furnishes the pyridazinium ions.

REFERENCES

- 1. K.H. Meyer, Ber. Dtsch. Chem. Ges., 52, 1468 (1919).
- 2. B.A. Carlson, W.A. Sheppard, and O.W. Webster, *J.Am.Chem.Soc., 97, 5291 (1975).*
- *3.* R. Sustmann, *Pure AppZ. Chem., 40, 569 (1974).*
- 4. All new compounds gave correct elemental analyses. The yields given below the formulas refer to isolated pure products and were not optimized.
- 5. C.W. Haigh, *Ann.Rep. NMR Spectroscopy 4, 311 (1971).*
- *6.* P.v.R. Schleyer, T.M.Su, M. Saunders, and J.C. Rosenfeld, *J.Am.Chem.Soc., 91, 5174 (1969).*

(Received in Germany 20 October 1983)